Mark schemes

Q1.

(a) the volume decreased

1

(b) the distance decreased

1

(c) the frequency of collisions increased

1

(d) the air pressure increased

1

(e) the mean speed of the particles increases

.

(f) $0.0130 = 2.60 \times 10^{-8} \times 1010 \times \Delta\theta$

1

$$\Delta\theta = \frac{0.0130}{(2.60 \times 10^{-8} \times 1010)}$$

$$\Delta\theta$$
 = 495 (°C)

allow a correct answer given to more than 3 s.f.

[8]

1

1

1

1

1

1

5-6

3-4

1-2

0

Q2.

(a) polarity of the potential difference doesn't change allow direction of the potential difference doesn't change

(b) E = QV

(c) $5010 = Q \times 12$

$$Q = \frac{5010}{12}$$

Q = 417.5 (C) allow 418 (C)

(d) $5010 = 0.015 \times L$

$$L = \frac{5010}{0.015}$$

 $L = 334\ 000\ (J/kg)$

(e) **Level 3:** Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.

Level 2: Relevant points (reasons / causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

No relevant content

Indicative content

- particles in a solid are in a regular pattern
- particles in a liquid are in a random arrangement
- particles in a solid are vibrating about fixed positions
- particles in a liquid are moving freely
- as the ice changes to water the temperature remains constant

- because as the ice changes to water the potential energy of the particles increases
- as the water warms the particles move faster
- so the kinetic energy of the particles increases
- internal energy is the total kinetic and potential energy of all the particles

ignore any references to density of ice vs liquid water ignore any references to spacing of particles

[14]

Q3.

- (a) balance
- (b) control variable
- (c) use tongs / gloves

OI

use a heatproof mat

allow other sensible methods of avoiding contact with hot beaker eg using a cloth allow wait for the beaker (and hot water) to cool down

1

1

1

(d) $25\ 200 = 0.0090\ L$

$$L = \frac{25\ 200}{0.0090}$$

1

L = 2800000 or

 $L = 2.8 \times 10^6$

J/kg

(e) the transfer of thermal energy from the water to the surroundings

[8]